kOmegaSST 模型
kOmegaSST (k-ω Shear Stress Transport) 模型
耗散方程 $ \frac{\partial}{\partial t}{\rho \omega} = \div \left( \rho D_\omega \nabla \omega \right) + \frac{\rho \gamma G}{\nu} - \frac{2}{3} \rho \gamma \omega \left( \nabla u \right) - \rho \beta \omega^2 - \rho \left(F_1 - 1\right) C\nabla_{k\omega} + S_\omega$
湍动能方程 $ \frac{\partial}{\partial t}{\rho k} = \nabla \left( \rho \nabla_k \nabla k \right) + \rho G - \frac{2}{3} \rho k \left( \nabla u \right) - \rho \beta^{*} \omega k + S_k$
湍流粘度 $\nu_t = a_1 \frac{k}{\max (a_1 \omega_, b_1 F_{23} \mathbf{S})}$
缺省模型系数
$\alpha_{k1}=0.85$
$\alpha_{k2}=1.0$
$\alpha_{\omega1}=0.5$
$\alpha_{\omega2}=0.856$
$\beta_1=0.075$
$\beta_2=0.0828$
$\gamma_1=5/9$
$\gamma_2=0.44$
$\beta^{*}=0.09$
$a_1=0.31$
$b_1=1.0$
$c_1=10.0$
- Log in to post comments